(二) 石英元器件的选型 1.石英晶体谐振器根据其外型结构不同可分为HC-49U、HC-49U/S、HC-49U/S SMD、UM-1、UM-5及柱状晶体等。 HC-49U适用于具有宽阔空间的电子产品如通信设备、电视机、电话机、电子玩具中。 HC-49U/S适用于空间高度受到限制的各类薄型、小型电子设备及产品中。 HC-49U/S SMD为准表面贴装型产品,适用于各类超薄型、小型电脑及电子设备中。 柱状石英晶体谐振器适用于空间狭小的稳频计时电子产品如计时器、电子钟、计算器等。 UM系列产品主要应用于移动通讯产品中,如BP机、移动手机等。 石英晶体谐振器主要用于频率控制和频率选择电路。 2. 石英晶体振荡器分非温度补偿式晶体振荡器、温度补偿晶体振荡器(TCXO)、电压控制晶体振荡器(VCXO)、恒温控制式晶体振荡器(OCXO)和数字化/μp补偿式晶体振荡器(DCXO/MCXO)等几种类型。其中,无温度补偿式晶体振荡器是最简单的一种,在日本工业标准(JIS)中,称其为标准封装晶体振荡器(SPXO)。 a..温度补偿晶体振荡器(TCXO) TCXO是通过附加的温度补偿电路使由周围温度变化产生的振荡频率变化量削减的一种石英晶体振荡器。TCXO的温度补偿方式目前在TCXO中,对石英晶体振子频率温度漂移的补偿方法主要有直接补偿和间接补偿两种类型: (1)直接补偿型 直接补偿型TCXO是由热敏电阻和阻容元件组成的温度补偿电路,在振荡器中与石英晶体振子串联而成的。在温度变化时,热敏电阻的阻值和晶体等效串联电容容值相应变化,从而抵消或削减振荡频率的温度漂移。该补偿方式电路简单,成本较低,节省印制电路板(PCB)尺寸和空间,适用于小型和低压小电流场合。但当要求晶体振荡器精度小于±1pmm时,直接补偿方式并不适宜。 (2)间接补偿型 间接补偿型又分模拟式和数字式两种类型。模拟式间接温度补偿是利用热敏电阻等温度传感元件组成温度 -电压变换电路,并将该电压施加到一支与晶体振子相串接的变容二极管上,通过晶体振子串联电容量的变化,对晶体振子的非线性频率漂移进行补偿。该补偿方式能实现±0.5ppm的高精度,但在3V以下的低电压情况下受到限制。数字化间接温度补偿是在模拟式补偿电路中的温度—电压变换电路之后再加一级模/数(A/D)变换器,将模拟量转换成数字量。该法可实现自动温度补偿,使晶体振荡器频率稳定度非常高,但具体的补偿电路比较复杂,成本也较高,只适用于基地站和广播电台等要求高精度化的情况。 高精度、低功耗和小型化,仍然是TCXO的研究课题。在小型化与片式化方面,面临不少困难,其中主要的有两点:一是小型化会使石英晶体振子的频率可变幅度变小,温度补偿更加困难;二是片式封装后在其回流焊接作业中,由于焊接温度远高于TCXO的最大允许温度,会使晶体振子的频率发生变化,若不采限局部散热降温措施,难以将TCXO的频率变化量控制在±0.5×10-6以下。但是,TCXO的技术水平的提高并没进入到极限,创新的内容和潜力仍较大。 b.电压控制晶体振荡器(VCXO) 电压控制晶体振荡器(VCXO),是通过施加外部控制电压使振荡频率可变或是可以调制的石英晶体振荡器。在典型的VCXO中,通常是通过调谐电压改变变容二极管的电容量来“牵引”石英晶体振子频率的。VCXO允许频率控制范围比较宽,实际的牵引度范围约为±200ppm甚至更大。如果要求VCXO的输出频率比石英晶体振子所能实现的频率还要高,可采用倍频方案。扩展调谐范围的另一个方法是将晶体振荡器的输出信号与VCXO的输出信号混频。与单一的振荡器相比,这种外差式的两个振荡器信号调谐范围有明显扩展。 在移动通信基地站中作为高精度基准信号源使用的VCXO代表性产品是日本精工 爱普生公司生产的VG-2320SC。这种采用与IC同样塑封的4引脚器件,内装单独开发的专用IC,器件尺寸为12.6mm×7.6mm×1.9mm,体积为0.19�。其标准频率为12~20MHz,电源电压为3.0±0.3V,工作电流不大于2mA,在-20~+75℃范围内的频率稳定度≤±1.5ppm,频率可变范围是±20~±35ppm,启动振荡时间小于4ms。 c.恒温控制晶体振荡器(OCXO) CXO是利用恒温槽使晶体振荡器或石英晶体振子的温度保持恒定,将由周围温度变化引起的振荡器输出频率变化量削减到最小的晶体振荡器,其内部结构如图4所示。在OCXO中,有的只将石英晶体振子置于恒温槽中,有的是将石英晶体振子和有关重要元器件置于恒温槽中,还有的将石英晶体振子置于内部的恒温槽中,而将振荡电路置于外部的恒温槽中进行温度补偿,实行双重恒温槽控制法。利用比例控制的恒温槽能把晶体的温度稳定度提高到5000倍以上,使振荡器频率稳定度至少保持在1×10-9。OCXO主要用于移动通信基地站、国防、导航、频率计数器、频谱和网络分析仪等设备、仪表中。 OCXO是由恒温槽控制电路和振荡器电路构成的。通常人们是利用热敏电阻“电桥”构成的差动串联放大器,来实现温度控制的。具有自动增益控制(AGC)的(C1app)振荡电路,是目前获得振荡频率高稳定度的比较理想的技术方案。 六、晶振的封装 石英晶振封装一般分为插件(Dip)和贴片(SMD)。 插件中又分为HC-49U、HC-33U、HC-49S、全尺寸(长方体)、半尺寸(正方体)、音叉型(圆柱状晶振)。HC-49U一般称49U,有些采购俗称“高型”,而HC-49S一般称49S,俗称“矮型”,音叉型(圆柱状晶振)按照体积分可以分为φ3*10、φ3*9、φ3*8、φ2*6、φ1*5、、φ1*4等。贴片型是按尺寸大小和脚位来分类:例如7050(7.0*5.0)、6035(6.0*3.5)、5032(5.0*3.2)、3225(3.2*2.5)、2025(2.0*2.5)等。脚位有4pin和2pin之分。所谓全尺寸的,又称长方形或者14pin,半尺寸的又称正方形或者8pin。不过要注意的是,这里的14pin和8pin都是指振荡器内部核心IC的脚位数,振荡器本身是4pin。 而从不同的应用层面来分,有源晶振又可分为普通晶振(OSC)、温补晶振(TCXO)、压控晶振(VCXO)压控晶振恒温晶振(OCXO)等。 晶振的封装形式大全 七、晶振的作用 由于石英晶体震荡器具有非常好的频率稳定性和抗外界干扰的能力,所以,石英晶体震荡器是用来产生基准频率的。通过基准频率来控制电路中的频率的准确性。石英晶体震荡器的应用范围是非常广的,它质量等级、频率精度也是差别很大的。通讯系统用的信号发生器的信号源,绝大部分也用的是石英晶体震荡器。 它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。晶振还有个作用是在电路产生震荡电流,发出时钟信号。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。 八、晶振元件的降额 晶体晶振降额标准 九、晶振的选择考虑要素 1、需要倍频的芯片需要配置好PLL周边配置电路,主要是隔离和滤波; 2、20MHz以下的晶体晶振基本上都是基频的器件,稳定度好,20MHz以上的大多是谐波的(如3次谐波、5次谐波等等),稳定度差,因此强烈建议使用低频的器件,毕竟倍频用的PLL电路需要的周边配置主要是电容、电阻、电感,其稳定度和价格方面远远好于晶体晶振器件; 3、时钟信号走线长度尽可能短,线宽尽可能大,与其它印制线间距尽可能大,紧靠器件布局布线,必要时可以走内层,以及用地线包围; 4、通过背板从外部引入时钟信号时有特殊的设计要求,需要详细参考相关的资料。 此外还要做一些说明: 总体来说晶振的稳定度等方面好于晶体,尤其是精密测量等领域,绝大多数用的都是高档的晶振,这样就可以把各种补偿技术集成在一起,减少了设计的复杂性。试 想,如果采用晶体,然后自己设计波形整形、抗干扰、温度补偿,那样的话设计的复杂性将是什么样的呢?我们这里设计射频电路等对时钟要求高的场合,就是采用 高精度温补晶振的,工业级的要好几百元一个。 特殊领域的应用如果找不到合适的晶振,也就是说设计的复杂性超出了市场上成品晶振水平,就必须自己设计了,这种情况下就要选用晶体了,不过这些晶体肯定不是市场上的普通晶体,而是特殊的高端晶体,如红宝石晶体等等。更高要求的领域情况更特殊,我们这里在高精度测试时采用的时钟甚至是原子钟、铷钟等设备提供的,通过专用的射频接插件连接,是个大型设备,相当笨重。
|